Expanded palette of Nano-lanterns for real-time multicolor luminescence imaging.
نویسندگان
چکیده
Fluorescence live imaging has become an essential methodology in modern cell biology. However, fluorescence requires excitation light, which can sometimes cause potential problems, such as autofluorescence, phototoxicity, and photobleaching. Furthermore, combined with recent optogenetic tools, the light illumination can trigger their unintended activation. Because luminescence imaging does not require excitation light, it is a good candidate as an alternative imaging modality to circumvent these problems. The application of luminescence imaging, however, has been limited by the two drawbacks of existing luminescent protein probes, such as luciferases: namely, low brightness and poor color variants. Here, we report the development of bright cyan and orange luminescent proteins by extending our previous development of the bright yellowish-green luminescent protein Nano-lantern. The color change and the enhancement of brightness were both achieved by bioluminescence resonance energy transfer (BRET) from enhanced Renilla luciferase to a fluorescent protein. The brightness of these cyan and orange Nano-lanterns was ∼20 times brighter than wild-type Renilla luciferase, which allowed us to perform multicolor live imaging of intracellular submicron structures. The rapid dynamics of endosomes and peroxisomes were visualized at around 1-s temporal resolution, and the slow dynamics of focal adhesions were continuously imaged for longer than a few hours without photobleaching or photodamage. In addition, we extended the application of these multicolor Nano-lanterns to simultaneous monitoring of multiple gene expression or Ca(2+) dynamics in different cellular compartments in a single cell.
منابع مشابه
Real-Time Monitoring of ATP-Responsive Drug Release Using Mesoporous-Silica-Coated Multicolor Upconversion Nanoparticles.
Stimuli-responsive drug delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with integrated real-time monitoring capabilities is still in its nascent stage because of the limitations of imaging modalities. In this paper, we describe the development of a pol...
متن کاملHigh-Sensitivity Real-Time Imaging of Dual Protein-Protein Interactions in Living Subjects Using Multicolor Luciferases
Networks of protein-protein interactions play key roles in numerous important biological processes in living subjects. An effective methodology to assess protein-protein interactions in living cells of interest is protein-fragment complement assay (PCA). Particularly the assays using fluorescent proteins are powerful techniques, but they do not directly track interactions because of its irrever...
متن کاملNa(Y1.5 Na0.5)F6 single-crystal nanorods as multicolor luminescent materials.
A facile wet chemical synthesis method was used to prepare a range of single-crystal Na(Y1.5 Na0.5)F6 nanorods with controllable aspect ratios. Their novel multicolor upconversion (UC) fluorescence has been successfully realized by doping Yb3+/Er3+ (green) and Yb3+/Tm3+ (blue) ion pairs. When doped with Eu3+ and Tb3+ ions, the strong red and green downconversion (DC) fluorescence has also been ...
متن کاملMultifunctional ScF3:Ln3+ (Ln = Tb, Eu, Yb, Er, Tm and Ho) nano/microcrystals: hydrothermal/solvothermal synthesis, electronic structure, magnetism and tunable luminescence properties.
A facile, hydrothermal/solvothermal route has been developed to synthesize a series of multifunctional lanthanide ion (Tb(3+), Eu(3+), Yb(3+), Tm(3+), Er(3+) and Ho(3+))-activated ScF3 nanocrystals. The morphology and size of ScF3 can be tuned in a controlled manner by altering the additives and volume ratios of H2O : EtOH in the initial solution. Under ultraviolet (UV), vacuum ultraviolet (VUV...
متن کاملIn vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals.
Quantum dots (QDs) have size-dependent optical properties that make them uniquely advantageous for in vivo targeted fluorescence imaging, traceable delivery, and therapy. The use of group II-VI (e.g., CdSe) QDs for these applications is advancing rapidly. However, group II-VI QDs contain toxic heavy metals that limit their in vivo applications. Thus, replacing these with QDs of a biocompatible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 14 شماره
صفحات -
تاریخ انتشار 2015